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Frequency downshift in three-dimensional wave
trains in a deep basin
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N–5008 Bergen, Norway

(Received 5 November 1996 and in revised form 4 August 1997)

The conservative evolution of weakly nonlinear narrow-banded gravity waves in deep
water is investigated numerically with a modified nonlinear Schrödinger equation, for
application to wide wave tanks. When the evolution is constrained to two dimensions,
no permanent shift of the peak of the spectrum is observed. In three dimensions,
allowing for oblique sideband perturbations, the peak of the spectrum is permanently
downshifted. Dissipation or wave breaking may therefore not be necessary to produce
a permanent downshift. The emergence of a standing wave across the tank is also
predicted.

1. Introduction
The frequency downshift in the evolution of Stokes waves was first reported by Lake

et al. (1977). They let an essentially two-dimensional uniform wave with frequency
ω0 propagate in a long tank. The uniform wave first developed sideband instabilities,
dominated by the most unstable upper and lower sideband frequencies ω0 ± δω.
The wave train became strongly modulated, but then recurred as a nearly uniform
wave. However, the frequency was seen to be downshifted to the most unstable lower
sideband frequency ω0 − δω. Subsequently, several other experiments also showed
downshift in the evolution of Stokes waves, e.g. Melville (1982), Su et al. (1982) and
Huang, Long & Shen (1996). Downshift has also been observed in the evolution of a
wave group (Su 1982), and in the evolution of bichromatic waves (Stansberg 1995).
A downshift does not always happen: it has been reported to occur only when the
initial steepness is sufficiently large. It has also been reported that when downshift
occurs, wave breaking can be observed in the strongly modulated stage of the wave
evolution.

The weakly nonlinear modulation theories for slowly modulated waves describe the
evolution of wave trains that have their spectral energy narrowly distributed around
a central wave vector k0, but are not limited to situations in which the central wave
itself carries energy. Assuming that the steepness is k0a = O(ε) and the modulation
bandwidth is |∆k|/k0 = O(ε), a perturbation analysis accurate to O(ε3) yields the
nonlinear Schrödinger (NLS) equation. In a coordinate system moving with the
group velocity, the NLS equation is symmetric in the upper and lower sidebands and
is thus not capable of describing a frequency shift. Taking the perturbation analysis
one order higher, Dysthe (1979) derived a modified nonlinear Schrödinger (MNLS)
equation which also includes the leading asymmetric effects. The broader bandwidth
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nonlinear Schrödinger (BMNLS) equation of Trulsen & Dysthe (1996) relaxes the
bandwidth constraint to |∆k|/k0 = O(ε1/2) in a theory accurate to O(ε7/2). From the
stability analysis of the Stokes wave, we know that the modulation wave vector δk
of the most unstable sidebands is such that |δk|/k0 = O(ε). It thus appears that
the BMNLS equation should be well-suited to account for a downshift to the most
unstable lower sideband, provided non-conservative effects can be properly accounted
for. These equations are all special limits of the Zakharov integral equation.

The two-dimensional conservative evolution of Stokes waves has been investigated
numerically with the NLS equation (e.g. Yuen & Ferguson 1978b), the MNLS
equation (Lo & Mei 1985), the Zakharov integral equation (Caponi, Saffman & Yuen
1982) and the exact hydrodynamic equations (Dold & Peregrine 1986). If the Stokes
wave has small steepness and is perturbed on a small number of unstable sidebands,
the evolution is characterized by cyclic modulation and demodulation (recurrence).
If the steepness is large or many unstable sidebands are perturbed, the behaviour is
more complicated. By employing the more accurate theories (not NLS), the upper and
lower sidebands are found to grow asymmetrically. Hence the most unstable lower
sideband may become dominant temporarily. However, no permanent frequency shift
has been found in the two-dimensional conservative evolution of Stokes waves.

It is commonly believed that the permanent downshift is caused by a combination
of wave breaking, dissipation and nonlinear wave modulation. Proceeding along
these lines, Trulsen & Dysthe (1990) added a simplified damping term to the MNLS
equation to account for wave breaking, and found a permanent downshift. Hara &
Mei (1991) found downshift by employing the MNLS equation modified to account
for forcing by weak wind and damping by eddy viscosity. Later, Hara & Mei (1994)
derived a modified MNLS equation for gravity–capillary waves forced by wind and
damped by eddy viscosity, and found downshift provided the wavelength was not too
short. Poitevin & Kharif (1991, 1992) and Skandrani, Kharif, & Poitevin (1996) solved
the exact viscous hydrodynamic equations also accounting for surface tension and
found a downshift. Uchiyama & Kawahara (1994) employed an equation originating
from nonlinear optics, slightly different from the MNLS equation for water waves.
They included a simplified term accounting for damping of the mean flow, and found
a downshift. Kato & Oikawa (1995) endowed the MNLS equation with a damping
term accounting for dissipation of the mean flow, and also found a downshift.
Okamura (1996) further found downshift in the evolution of standing gravity waves.
A different way of explaining the downshift is suggested in Tulin (1996), considering
the conservation of energy, momentum and angular momentum in breaking waves.
Based on these works, the downshift of two-dimensional Stokes waves appears to be
related to damping effects in a rather insensitive manner. A rigorous account of the
influence of wave breaking is however a monumental task, and is still lacking.

Three-dimensional evolution of weakly nonlinear waves has not been extensively
studied. Using the NLS equation, Yuen & Ferguson (1978a) found that certain initial
conditions can lead to perfect recurrence, while Martin & Yuen (1980) found that
other initial conditions can lead to energy leakage, rendering the NLS equation
potentially useless for three-dimensional computations of Stokes waves. Lo & Mei
(1987) employed the MNLS equation to investigate the instability of a uniform wave
train to oblique sideband perturbations. They found that the higher-order equation
suppressed the energy leakage, but did not find frequency downshift.

In this paper we wish to investigate more closely the effect of oblique sideband
modulation on the evolution of Stokes waves. Several experiments have been con-
ducted in wave tanks sufficiently wide that the effect of three-dimensionality should
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be considered. Our discussion is limited to narrow-banded modulation of weakly non-
linear waves (type I instability). We do not consider short-crested three-dimensional
modulation for strongly nonlinear waves (type II instability), observed for instance
by Su et al. (1982).

In a wave tank of width b, the smallest transverse wave vector component is
k⊥ = π/b. For a deep-water gravity wave with central frequency f0, the central
wavenumber is k0 = (2πf0)

2/g, where g ≈ 9.8 m s−2 is the acceleration due to gravity.
The normalized transverse wave vector component will then be quantized in steps of
∆µ = k⊥/k0. In figure 5 of Lake et al. (1977), a Stokes wave with frequency 3.6 Hz
propagated in a tank of width 0.91 m giving ∆µ ≈ 0.066. In one of the experiments
described in Huang et al. (1996), a Stokes wave with frequency of 2.5 Hz propagated
in a tank of width 0.915 m giving ∆µ ≈ 0.136. Similarly, in test 61 of Stansberg
(1995), a bichromatic wave train with central frequency 1.0 Hz propagated in a tank
of width 10 m giving ∆µ ≈ 0.078. In all these cases, narrow-banded three-dimensional
modulation is possible.

We employ the BMNLS equation of Trulsen & Dysthe (1996) because it has good
bandwidth resolution to describe three-dimensional modulation. In §2 we review the
BMNLS equation for application to numerical integration. The numerical method
is briefly reviewed in §3. There are several ways to quantify a frequency shift, some
of which are discussed in §4 aided by conservation laws for the BMNLS equation
derived in the Appendix. Traditionally, and in this paper, the downshift is considered
as a shift of the peak of the spectrum.

The evolution of a Stokes wave in two and three dimensions is presented in §5. The
major result is that two- and three-dimensional evolution are qualitatively different.
In two dimensions, without any dissipative effects added, there is no permanent shift
of the peak frequency, while in three dimensions the peak frequency is permanently
downshifted. In conclusion, dissipation and breaking may contribute to the experi-
mentally observed frequency downshift, but need not be necessary unless the tank is
narrow compared to the central wavelength. In addition, we predict the emergence of
standing waves across the tank at large fetch.

2. The broader bandwidth modified nonlinear Schrödinger (BMNLS)
equation

Trulsen & Dysthe (1996) derived the BMNLS equation correct to order O(ε7/2) for
the evolution of gravity waves with steepness k0a = O(ε), bandwidth |∆k|/k0 = O(ε1/2)
on water with depth (k0h)

−1 = O(ε1/2). Here k0, ∆k, a and h denote a characteristic
wavenumber, modulation wave vector, amplitude and depth, respectively, while ε� 1
is a small ordering parameter. The physical wave vector is k0 + ∆k. We will apply
this equation in a long wave tank of width b, where the x-axis is along the tank, y
is across and z is vertical. After all variables have been made non-dimensional by
using the characteristic wavenumber k0 and frequency ω0 = (gk0)

1/2, the harmonic
expansions for the velocity potential φ and surface displacement ζ are

φ = φ̄+ 1
2

(
Aeiθ+z + A2e

2(iθ+z) + · · ·+ c.c.
)
, (2.1)

ζ = ζ̄ + 1
2

(
Beiθ + B2e

2iθ + · · ·+ c.c.
)
, (2.2)

where c.c. denotes the complex conjugate, and where θ = x − t. The evolution
equations for the first harmonic of the velocity potential A and the potential of the
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induced slow drift φ̄ are
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The first harmonic of the surface displacement is given by
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For application to experiments, we need to look at the slow evolution of the wave
spectrum with increasing distance from the wave maker. It is convenient to introduce
the moving coordinates (Lo & Mei 1985)

x = η, x/cg − t = ξ, (2.9)

where cg = 1/2 is the linear group velocity. Hence η is the distance over which
the group has advanced (the fetch), while ξ is a negative time coordinate of a fixed
observer. In terms of the new coordinates, the evolution equations for A and φ̄ become
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+ i
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∂φ̄

∂y
=
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B = iA+
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− 3i

8
|A|2A. (2.15)

Incidentally, in the limit of one horizontal dimension equations (2.10)–(2.15) are
equivalent to the corresponding MNLS equations.

Of primary interest for comparison with experimental observations is the first
harmonic of the surface displacement. While it has been customary to solve the
differential equations for A and then compute B for presentation, we find it more
convenient to solve for B directly. The equations for B are identical to those for A
with one additional nonlinear term:
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∂φ̄

∂y
=
∂B

∂y
= 0 at y = 0 and y = b. (2.20)

For a numerical solution in three dimensions, the equations for B are preferred to
the equations for A because they have better confinement of the instability region
for the Stokes wave and are thus less susceptible to numerical instability and energy
leakage. To see this, consider a Stokes wave solution, which implies

A = A0e
−iA2

0η, B = iB0e
−iB2

0η and φ̄ = 0, (2.21)

where A0 and B0 are real (see (2.15)). We seek the behaviour of small perturbations
in amplitude and phase(

A
B

)
= (1 + a′ + iθ′)

(
A0e

−iA2
0η

B0e
−iB2

0η

)
, (2.22)

having the plane wave solution a′

θ′

φ̄

 =

 â

θ̂

φ̂

 cos (µy)ei(λξ−Ωη) + c.c. (2.23)

Here µ must be an integer multiple of π/b to satisfy the boundary conditions on the
sidewalls. The growth rates are given by

ImΩA = Im

(
Q

(
Q− 2A2

0 + 8A2
0

λ2

K
coth(Kh)

))1/2

(2.24)
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Figure 1. Primary instability region of a Stokes wave with A0 = B0 = 0.15 on infinite depth: —,
evolution equation for A; - - -, evolution equation for B. Most unstable sideband: *, equation for
A; ◦, equation for B.

and

ImΩB = Im

(
Q

(
Q− 2B2

0 + 8B2
0

λ2

K
coth(Kh)

)
+ 4B4

0λ
2

)1/2

, (2.25)

where

Q = λ2 − 1
2
µ2 − 3

2
λ2µ2 + 1

8
µ4 and K =

(
4λ2 + µ2

)1/2
. (2.26)

The additional term in (2.25) is due to the nonlinear term B2∂B∗/∂ξ in (2.16); its effect
can be seen in figure 1. The difference in growth rate is not asymptotically significant
within the order of truncation of the perturbation analysis, but it makes the system
(2.16)–(2.20) preferable for numerical integration. The nonlinear term B2∂B∗/∂ξ is
within the MNLS level of approximation, hence the equations for B have better
confinement of the instability region for the MNLS equation also.

3. Numerical method
We employ the numerical method developed by Lo & Mei (1985, 1987). The two-

dimensional domain (ξ, y) is discretized by a Fourier collocation method. Integration
over the fetch η is done by a split-step scheme, in which the linear part of the
governing equation (containing high-order derivatives) is integrated exactly in the
Fourier domain, while the nonlinear part is integrated with a second-order explicit
scheme in the physical domain. The linear (L) and nonlinear (N) integrations are
alternated as NLLN, giving a second-order-accurate integration of the full equation.
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An M ×N grid of collocation points is employed for ξ and y

(ξm, yn) =

(
2πm

M∆λ
,

2πn

N∆µ

)
for 0 6 m < M and 0 6 n < N, (3.1)

with corresponding spectral components

(λi, µj) = (i∆λ, j∆µ) for − 1
2
M < i 6 1

2
M and − 1

2
N < j 6 1

2
N. (3.2)

The discrete Fourier transform pair is given by

B̂(λi, µj , η) =
1

MN

M−1∑
m=0

N−1∑
n=0

B(ξm, yn, η)e−i(λiξm+µjyn) (3.3)

and

B(ξm, yn, η) =
∑

−M
2 <i6

M
2

∑
− N

2 <j6
N
2

B̂(λi, µj , η)ei(λiξm+µjyn). (3.4)

Since ξ is a negative time coordinate of a fixed observer, λ is a frequency. The
Fourier decomposition in time implies that the solution is periodic with period 2π/∆λ.
In practice, this requires the wave generator to be periodic as well.

The quantization in the transverse direction ∆µ = π/b is imposed by the finite
width b of the wave tank. The boundary conditions on the sidewalls are satisfied by
requiring that the coefficients are symmetric:

B̂(λi, µj , η) = B̂(λi, µ−j , η) (3.5)

for all j.
The quantity

I(η) =
∑
i,j

|B̂(λi, µj , η)|2 (3.6)

will henceforth be referred to as ‘energy’. In the Appendix we show that the corre-
sponding quantity for the continuous system is conserved. We have monitored the
conservation of I to verify the accuracy of the numerical computations.

Nonlinear products are evaluated without aliasing; energy leakage should hence
appear as a decrease of I . Numerical instability will on the other hand result in growth
of I . We have found that numerical instability is absent provided the asymptotic
bandwidth constraint is observed for the discretization of the Fourier domain; one
should at least ensure that N∆λ/2 < 1 and M∆µ/2 < 1.

4. Quantification of the downshift
The downshift has traditionally been considered as a shift of the peak of the spec-

trum. Hence one looks for the spectral component (λpeak, µpeak) for which the spectrum

|B̂(λi, µj , η)|2 achieves its maximum. Recall that λ is the frequency corresponding to
the time coordinate ξ, while η denotes the position along the wave tank.

Even though there may be transverse modulation of the wave field, experiments
usually do not resolve the modulation across the wave tank. It may then be sensible
to introduce the laterally integrated frequency spectrum, which has been summed
across the wave tank:

S(λi, η) =
∑
j

|B̂(λi, µj , η)|2. (4.1)
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We then define λ̄peak as the frequency for which S(λi, η) achieves its maximum. For
the spectrum measured by a wave gauge positioned at the midpoint between the tank
walls, only the even modes (j even) would contribute to the sum (4.1).

Alternatively, one might use the mean frequency of the spectrum, defined by

λ̄ =

∑
i,j

λi|B̂(λi, µj , η)|2

I
. (4.2)

The one-dimensional version of this was used by Uchiyama & Kawahara (1994) and
Kato & Oikawa (1995). Care should be taken when interpreting the results, as they
used the spectrum of the velocity potential |Â|2, while we use the spectrum of the

surface displacement |B̂|2. In the Appendix it is shown that the means of these two

spectra are not identical. While the mean of |Â|2 is constant, the mean of |B̂|2 is
not. This is indeed confirmed by our numerical computations. We believe that for
application to observations, the spectrum of the surface displacement is more relevant.

There are thus at least three different choices of diagnostic frequencies (λpeak, λ̄peak,

λ̄) that may be used to define a frequency shift. We monitor the evolution of these three
through the numerical computations. Traditionally, and in this paper, the frequency
downshift is understood as a downshift of the spectral peak, not the spectral mean.

5. Evolution of Stokes waves
We here show computations on the evolution of a Stokes wave with initial steepness

ε = 0.12 on infinite depth. In the following computations, the initial Stokes wave is
perturbed on all sidebands inside a disk

B̂(λi, µj , 0) =


ε, λi = µj = 0,

c, 0 <
(
λ2
i + µ2

j

)1/2
6 0.15,

0 otherwise.

(5.1)

Here c is a positive number such that the total energy is

I = 1.01 ε2. (5.2)

For the given steepness and depth, the most unstable perturbations have λ = ±0.0986
and µ = 0, and are hence inside the perturbation region.

First we consider two- and three-dimensional evolution for the frequency dis-
cretization ∆λ = 0.1 in a grid with M = 16. With this choice of parameters, the most
unstable discrete modes are the first two sidebands λ±1. The largest modulation fre-
quency represented is λ8 = 0.8. For three-dimensional evolution we use the transverse
discretization ∆µ = 0.1 with N = 16. This corresponds to a channel that is narrower
than in the experiments of Lake et al. (1977) and Stansberg (1995) discussed in the
introduction. The first quadrant of the computational grid in the Fourier domain
is shown in figure 2, where the instability region for the initial Stokes wave is also
indicated.

The evolution in two dimensions (µ = 0) is presented in figure 3. The initial Stokes
wave is perturbed on its most unstable upper and lower sidebands. In figure 3(a)
the energy of these sidebands and the central wave can be studied. In figure 3(b)
the frequency of the most energetic Fourier mode λpeak and mean frequency λ̄ are
shown. The behaviour is periodic, with perfect recurrence of the Stokes wave. In
each recurrence period, the frequency of the peak of the spectrum is temporarily
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Figure 2. First quadrant of the modulation wave vector plane: ×, computational grid of 16 × 16
Fourier modes with ∆λ = ∆µ = 0.1; —, instability region for a Stokes wave with steepness ε = 0.12
on infinite depth.

downshifted, while the mean frequency is temporarily upshifted. Snapshots of the
spectrum |B̂(λi, η)|2 are shown in figure 4 for three values of the fetch ε2η: for the
initial perturbed Stokes wave (a), just before the the heavily modulated stage (b),
and during the heavily modulated stage (c). Figure 4(c) shows how the the peak and
the average frequencies are temporarily shifted in opposite directions, with a single
dominating lower sideband competing with a broad tail of upper sidebands.

In figure 5 the evolution is extended to three dimensions, with uniform perturbation
on the eight sidebands closest to the initial Stokes wave. The simple recurrence
behaviour is suppressed. Instead, after approximately one recurrence period for the
corresponding two-dimensional case, λpeak and λ̄peak are both downshifted to the most

unstable lower sideband. The mean frequency λ̄ is slightly upshifted. This new state
remains unchanged for a long distance. Snapshots of the spectrum |B̂(λi, µj , η)|2 are
shown in figure 6 for the initial state of a near perfect Stokes wave (a), before the
downshift (b,c), after the downshift (d ), and after a long fetch (e,f ).

Lo & Mei (1987) carried out similar computations for the three-dimensional evo-
lution of a Stokes wave, but did not find any frequency shift. That is likely to be
due to their choice of initial spectrum with perturbation energy in only four unstable
sidebands with separation ∆λ = ∆µ =

√
2ε = 0.212 for an initial steepness ε = 0.15.

The narrow-banded modulations considered here are then effectively suppressed.
We then turn to computations with discretization ∆λ = 0.00625 in a grid with

M = 256. The most unstable perturbations are now represented by the two sidebands
λ±16. The largest modulation frequency λ128 is still 0.8. For three-dimensional evolution
we use the same transverse discretization ∆µ = 0.1 with N = 16, corresponding to a
channel of the same width.
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Figure 3. Two-dimensional evolution of a Stokes wave perturbed on its most unstable upper

and lower sidebands. (a) Energy evolution: —, central wave |B̂(λ0, η)|2; · · ·, first lower sideband

|B̂(λ−1, η)|2; – –, first upper sideband |B̂(λ1, η)|2; – · – ·, total energy I . (b) Frequency evolution: —,

peak sideband frequency λpeak; – · – ·, mean frequency λ̄.
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Figure 4. Snapshots of the spectrum |B̂(λi, η)|2 at (a) η = 0; (b) ε2η = 3; (c) ε2η = 3.5.

The evolution in two dimensions is presented in figure 7. The initial Stokes wave
is perturbed on the nearest 46 sidebands. The two-dimensional behaviour in figure 7
no longer shows a simple recurrent behaviour because the Stokes wave has been
perturbed on a large number of unstable sidebands. The energy of the initial Stokes
wave is eventually smeared out over a large number of sidebands, and thus the peak
of the spectrum becomes ambiguous, evidenced by the random oscillations of the
peak frequency for large η. There is no permanent shift of the peak of the spectrum.

In figure 8 the evolution is extended to three dimensions, with uniform perturbation
on the 116 sidebands nearest to the initial Stokes wave. The energy is sheared by a
large number of sidebands. However, the peak frequencies of the spectrum λpeak and

λ̄peak remain well-defined and are both suddenly downshifted. The mean frequency λ̄
is slightly upshifted. This new state remains unchanged for a long distance. Snapshots
of the spectrum |B̂(λi, µj , η)|2 are shown in figure 9 for the initial state of a near
perfect Stokes wave (a), before the downshift (b), during the downshift (c), after the
downshift (d ), and after a long fetch (e,f ).

Note that in figure 9 the peak of the spectrum is not downshifted to the most
unstable lower sideband, but to a sideband with transverse component µ±1 = ±∆µ.
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Figure 5. Three-dimensional evolution of a Stokes wave uniformly perturbed on the nearest eight

sidebands. (a) Energy evolution: —, |B̂(λpeak, µpeak, η)|2; – –, S(λ̄peak, η), see (4.1); – · – ·, total energy

I . (b) Frequency evolution: —, λpeak; – –, λ̄peak; – · – ·, λ̄.
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Figure 6. Snapshots of the spectrum |B̂(λi, µj , η)|2 for −7 6 i 6 8 and 0 6 j 6 8 (the spectrum is
symmetric for positive and negative j): (a) initial state at η = 0; (b) ε2η = 3; (c) ε2η = 4 just before
the downshift; (d ) ε2η = 5 just after the downshift; (e) ε2η = 9; (f ) ε2η = 16. The vertical scale has
been magnified by a factor 2 in (c–f ).

This implies the emergence of a standing wave across the wave tank with wavelength
equal to twice the width of the tank.

The downshift in figure 8 happens for the non-dimensional fetch ε2η ≈ 7. For
application to an experiment with central frequency f0 = 3.6 Hz and initial steepness
ε = 0.12, this corresponds to a dimensional fetch of approximately 9.4 m.

6. Conclusion
We have shown that computations using the conservative BMNLS equation yield

qualitatively different results in two and three dimensions. In two dimensions there
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Figure 7. Two-dimensional evolution of a Stokes wave uniformly perturbed on the nearest 46

sidebands. (a) Energy evolution: —, |B̂(λpeak, η)|2; – · – ·, total energy I . (b) Frequency evolution:

—, λpeak; – · – ·, λ̄.
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Figure 8. Three-dimensional evolution of a Stokes wave uniformly perturbed on the nearest 116
sidebands. (a) Energy evolution. (b) Frequency evolution. See caption of figure 5 for line styles.

is no permanent shift of the peak frequency. In three dimensions, the peak frequency
can be downshifted and standing waves across the tank can arise as a consequence
of slow and weakly nonlinear wave modulation. We have found that numerical
computations using the MNLS equation also show the same qualitative result, while
the NLS equation does not yield a frequency shift. The three-dimensional conservative
downshift is therefore likely to be due to the asymmetric terms found by Dysthe
(1979). However, due to the broadening of the bandwidth experienced in three-
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Figure 9. Snapshots of the spectrum |B̂(λi, µj , η)|2 for −127 6 i 6 128 and 0 6 j 6 8 (the spectrum
is symmetric for positive and negative j): (a) initial state at η = 0 (the top of the peak at i = j = 0
has been truncated); (b) ε2η = 6 before the downshift; (c) ε2η = 7 during the downshift; (d ) ε2η = 8
after the downshift; (e) ε2η = 14; (f ) ε2η = 22. The vertical scale has been magnified by a factor 2
in (c–f ).

dimensional evolution, we feel that the broader bandwidth equation is more satisfying
for this application. The MNLS and BMNLS equations are both special limits of
the Zakharov integral equation, thus we anticipate that the same result can also be
obtained by the latter.

The downshift of the peak frequency reported here does not require dissipation
or wave breaking. However, for sufficiently narrow laboratory wave tanks, narrow-
banded transverse modulation will be suppressed, and the present explanation of the
downshift cannot be used. In reality, the full explanation of the downshift probably
involves the combined effects of three-dimensional nonlinear modulation, dissipation
and wave breaking.

This research has been supported by the Norwegian Research Council through
a fellowship (NFR 109328/410) and a grant for computing time (Programme for
Supercomputing).

Appendix. Conservation laws
In §2 we reviewed three different forms of the BMNLS equation. To obtain

conservation laws valid for all three forms, we consider a generalization of the BMNLS
equation with arbitrary coefficients, having all of the above evolution equations as
special cases. The complex amplitude a denotes the first harmonic of a wave train.
Linear dissipation is included through the coefficient d0. With real coefficients α, β, d0

and ci for i = 0, 1, . . . , 15, we consider the system

∂a

∂t
+ (d0 + ic0)a+ c1

∂a

∂x
+ ic2

∂2a

∂x2
+ ic3

∂2a

∂y2
+ ic4|a|2a+ c5

∂3a

∂x3
+ c6

∂3a

∂x∂y2

+ c7|a|2
∂a

∂x
+ c8a

2 ∂a
∗

∂x
+ ic9a

∂φ̄

∂x
+ ic10

∂4a

∂x4
+ ic11

∂4a

∂x2∂y2
+ ic12

∂4a

∂y4
+ c13

∂5a

∂x5

+ c14

∂5a

∂x3∂y2
+ c15

∂5a

∂x∂y4
= 0 at z = 0 (A 1)



372 K. Trulsen and K. B. Dysthe

∂φ̄

∂z
= β

∂|a|2
∂x

at z = 0 (A 2)

α2 ∂
2φ̄

∂x2
+
∂2φ̄

∂y2
+
∂2φ̄

∂z2
= 0 for − h < z < 0 (A 3)

∂φ̄

∂z
= 0 at z = −h (A 4)

The Fourier transform of a(x) is denoted by â(k),

â(k) =
1

(2π)2

∫
a(x) exp(−ik · x) dx, a(x) =

∫
â(k) exp(ik · x) dk, (A 5)

with x = (x, y) and k = (λ, µ). The results in this section are derived for an infinite
domain in x with sufficiently rapidly vanishing boundary conditions on a(x) as
|x| → ∞. These results are still valid for a finite domain 0 6 y 6 b with vanishing
normal derivatives on the sidewalls, or for a periodic domain in x. Then λ and µ will
take discrete values λi and µj , and integration over λ and µ will become summation
over λi and µj .

It is convenient to introduce the quantities

Ia(t) =

∫
|a|2 dx = (2π)2

∫
|â|2 dk (A 6)

and

Ja(t) =

∫ (
i

2
a
∂a∗

∂x
+ c.c.

)
dx = (2π)2

∫
λ|â|2 dk. (A 7)

The mean of λ in the spectrum |â|2 is then

λ̄a =
Ja

Ia
. (A 8)

It is readily found that

dIa
dt

= −2d0Ia (A 9)

and

dJa
dt

= c8

∫ (
−i

(
a
∂a∗

∂x

)2

+ c.c.

)
dx− 2d0Ja (A 10)

In (2.10) for the evolution of the first harmonic of the velocity potential A over fetch
η, the coefficients c8 and d0 are zero. Hence substituting A for a, the corresponding
IA, JA and the mean λ̄A are all constant. Even with linear dissipation d0 > 0 included,
it is seen that the decay rates of IA and JA are equal, and hence the mean of the
spectrum λ̄A is still constant.

In (2.16) for the evolution of the first harmonic of the surface displacement B over
fetch η, we have c8 > 0 while d0 = 0. Hence substituting B for a, the corresponding IB
is constant, but JB is not constant due to the nonlinear term B2∂B∗/∂ξ. From (2.15)
we have to a leading approximation

B̂ ≈ i(1 + λ)Â. (A 11)

For positive c8, the mean of the spectrum λ̄B should therefore initially be upshifted
if |B̂|2 is initially symmetrically distributed around λ = 0. This is confirmed by our
numerical results.
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